
What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

What is planning?

Planning is the art and practice of thinking before acting: of reviewing the courses of
action one has available and predicting their expected (and unexpected) results to be
able to choose the course of action most beneficial with respect to one’s goals.

Patrik Haslum

1 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

What is planning?

Planning is the art and practice of thinking before acting: of reviewing the courses of
action one has available and predicting their expected (and unexpected) results to be
able to choose the course of action most beneficial with respect to one’s goals.

Patrik Haslum

Problem of Action Selection

1 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Approaches in AI to Problem of Action Selection

1 Programming: specify control by hand

2 Learning: learn control from experience

3 Planning: derive control automatically from model

2 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Approaches in AI to Problem of Action Selection

1 Programming: specify control by hand

2 Learning: learn control from experience

3 Planning: derive control automatically from model

Planning is the model-based approach to action selection: produces the behavior from
the model (solves the model)

2 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Approaches in AI to Problem of Action Selection

1 Programming: specify control by hand

2 Learning: learn control from experience

3 Planning: derive control automatically from model

Planning is the model-based approach to action selection: produces the behavior from
the model (solves the model)

Other famous model-based techniques: SAT, CSP/COP, MILP

2 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Classical Planning Model

Classical planning model is a tuple S = 〈S, s0, SG, A, f, c〉, where

Finite and discrete state space S

A known initial state s0 ∈ S

A set SG ⊆ S of goal states

Actions A(s) ⊆ A applicable in each s ∈ S

A deterministic transition function
s′ = f(a, s) for a ∈ A(s)

Non-negative action costs c(a, s)

3 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Classical Planning Model

Classical planning model is a tuple S = 〈S, s0, SG, A, f, c〉, where

Finite and discrete state space S

A known initial state s0 ∈ S

A set SG ⊆ S of goal states

Actions A(s) ⊆ A applicable in each s ∈ S

A deterministic transition function
s′ = f(a, s) for a ∈ A(s)

Non-negative action costs c(a, s)

Solution: sequence of applicable actions that maps s0 into SG

3 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Classical Planning Model

Classical planning model is a tuple S = 〈S, s0, SG, A, f, c〉, where

Finite and discrete state space S

A known initial state s0 ∈ S

A set SG ⊆ S of goal states

Actions A(s) ⊆ A applicable in each s ∈ S

A deterministic transition function
s′ = f(a, s) for a ∈ A(s)

Non-negative action costs c(a, s)

Solution: sequence of applicable actions that maps s0 into SG

Different models obtained by relaxing assumptions in blue: planning with preferences,
conformant planning, contingent planning, FOND, MDPs, POMDPs, . . .

3 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Language for Classical Planning: STRIPS

A STRIPS Planning task is 5-tuple Π = 〈F,O, c, I,G〉:
F : finite set of atoms (boolean variables)

O: finite set of operators (actions) of form 〈Add,Del, Pre〉
O: (Add/Delete/Preconditions; subsets of atoms)

c : O 7→ R0+ captures operator cost

I: initial state (subset of atoms)

G: goal description (subset of atoms)

Plan: sequence of applicable actions that maps I into a state consistent with G

4 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Language for Classical Planning: SAS+

A SAS+ Planning task is 5-tuple Π = 〈V,O, c, I,G〉:
V : finite set of finite-domain multi-valued variables

O: finite set of operators (actions) of form 〈pre, eff〉
O: (Preconditions/Effects; partial variable assignments)

c : O 7→ R0+ captures operator cost

I: initial state (variable assignment)

G: goal description (partial variable assignment)

Plan: sequence of applicable actions that maps I into a state consistent with G

4 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

From Language to Models

A STRIPS Planning task Π = 〈F,O, c, I,G〉 determines state model S(Π) where

the states s ∈ S are collections of atoms from F

the initial state s0 is I

the goal states s are such that G ⊆ s

the actions a in A(s) are ops in O s.t. Pre(a) ⊆ s

the next state is s′ = s−Del(a) + Add(a)

action costs c(a, s) = c(a)

♠ Solutions of S(Π) are plans of Π

5 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Planning and Model-based Reinforcement Learning

Forward model: (a, si)→ si+1 = si −Del(a) + Add(a) if Pre(a) ⊆ si,
(a, si) 7→ si otherwise

6 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Planning and Model-based Reinforcement Learning

Forward model: (a, si)→ si+1 = si −Del(a) + Add(a) if Pre(a) ⊆ si,
(a, si) 7→ si otherwise

Backward/reverse model: si+1 → (a, si) where Del(a) ∩ si+1 = ∅ and
si = si+1 −Add(a) + Pre(a)

6 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Planning and Model-based Reinforcement Learning

Forward model: (a, si)→ si+1 = si −Del(a) + Add(a) if Pre(a) ⊆ si,
(a, si) 7→ si otherwise

Backward/reverse model: si+1 → (a, si) where Del(a) ∩ si+1 = ∅ and
si = si+1 −Add(a) + Pre(a)

Inverse model: (si+1, si)→ a, where Pre(a) ⊆ si and
si+1 = si −Del(a) + Add(a)

6 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Planning and Model-based Reinforcement Learning

Forward model: (a, si)→ si+1 = si −Del(a) + Add(a) if Pre(a) ⊆ si,
(a, si) 7→ si otherwise

Backward/reverse model: si+1 → (a, si) where Del(a) ∩ si+1 = ∅ and
si = si+1 −Add(a) + Pre(a)

Inverse model: (si+1, si)→ a, where Pre(a) ⊆ si and
si+1 = si −Del(a) + Add(a)

Rewards approximate −c∗(si+1), the negative true cost of reaching the goal
(reward obtainable) from si+1: (si, a, si+1)→ h(si+1)− h(si)

6 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Planning and Model-based Reinforcement Learning

Forward model: (a, si)→ si+1 = si −Del(a) + Add(a) if Pre(a) ⊆ si,
(a, si) 7→ si otherwise

Backward/reverse model: si+1 → (a, si) where Del(a) ∩ si+1 = ∅ and
si = si+1 −Add(a) + Pre(a)

Inverse model: (si+1, si)→ a, where Pre(a) ⊆ si and
si+1 = si −Del(a) + Add(a)

Rewards approximate −c∗(si+1), the negative true cost of reaching the goal
(reward obtainable) from si+1: (si, a, si+1)→ h(si+1)− h(si)

Non-deterministic setting is (slightly) more complicated

6 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Planning and Model-based Reinforcement Learning

Forward model: (a, si)→ si+1 = si −Del(a) + Add(a) if Pre(a) ⊆ si,
(a, si) 7→ si otherwise

Backward/reverse model: si+1 → (a, si) where Del(a) ∩ si+1 = ∅ and
si = si+1 −Add(a) + Pre(a)

Inverse model: (si+1, si)→ a, where Pre(a) ⊆ si and
si+1 = si −Del(a) + Add(a)

Rewards approximate −c∗(si+1), the negative true cost of reaching the goal
(reward obtainable) from si+1: (si, a, si+1)→ h(si+1)− h(si)

Non-deterministic setting is (slightly) more complicated

In what follows: the benefit of the more informative model
6 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Classical Planning: Computational problems

Cost-optimal planning: find a plan that minimizes summed operator cost

7 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Classical Planning: Computational problems

Cost-optimal planning: find a plan that minimizes summed operator cost

Satisficing planning: find a plan, cheaper plans a better

7 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Classical Planning: Computational problems

Cost-optimal planning: find a plan that minimizes summed operator cost

Satisficing planning: find a plan, cheaper plans a better

Agile planning: find a plan, quicker is better

7 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Classical Planning: Computational problems

Cost-optimal planning: find a plan that minimizes summed operator cost

Satisficing planning: find a plan, cheaper plans a better

Agile planning: find a plan, quicker is better

Top-k planning: find k plans such that no cheaper plans exist

7 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Classical Planning: Computational problems

Cost-optimal planning: find a plan that minimizes summed operator cost

Satisficing planning: find a plan, cheaper plans a better

Agile planning: find a plan, quicker is better

Top-k planning: find k plans such that no cheaper plans exist

Top-quality planning: find all plans up to a certain cost

7 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Classical Planning: Computational problems

Cost-optimal planning: find a plan that minimizes summed operator cost
Satisficing planning: find a plan, cheaper plans a better
Agile planning: find a plan, quicker is better
Top-k planning: find k plans such that no cheaper plans exist
Top-quality planning: find all plans up to a certain cost
Diverse planning: variety of problems, aiming at obtaining diverse set of plans,
considering plan quality as well

sat-k

bD-k

bQbD-k

bQ-k

bDoptQ-k bQoptD-koptQ-koptD-k

opt-k

7 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Beyond Classical Planning: Some computational problems

Net-benefit planning: find a plan maximizes (utility - cost)

8 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Beyond Classical Planning: Some computational problems

Net-benefit planning: find a plan maximizes (utility - cost)

Oversubscription planning: find a plan of bounded cost that maximizes utility

8 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Beyond Classical Planning: Some computational problems

Net-benefit planning: find a plan maximizes (utility - cost)

Oversubscription planning: find a plan of bounded cost that maximizes utility

Conformant planning: find a plan that works for all possible initial states

8 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Beyond Classical Planning: Some computational problems

Net-benefit planning: find a plan maximizes (utility - cost)

Oversubscription planning: find a plan of bounded cost that maximizes utility

Conformant planning: find a plan that works for all possible initial states

Contingent planning: find a branching plan that works for all possible initial states

8 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Beyond Classical Planning: Some computational problems

Net-benefit planning: find a plan maximizes (utility - cost)

Oversubscription planning: find a plan of bounded cost that maximizes utility

Conformant planning: find a plan that works for all possible initial states

Contingent planning: find a branching plan that works for all possible initial states

Temporal planning: find which actions to execute and their consistent schedule

8 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Beyond Classical Planning: Some computational problems

Net-benefit planning: find a plan maximizes (utility - cost)

Oversubscription planning: find a plan of bounded cost that maximizes utility

Conformant planning: find a plan that works for all possible initial states

Contingent planning: find a branching plan that works for all possible initial states

Temporal planning: find which actions to execute and their consistent schedule

Probabilistic planning: find a policy, mapping of states to actions, optimizing, e.g.

expected total rewards over a finite horizon
expected average rewards over an infinite horizon
expected discounted rewards over an infinite horizon

8 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Why is planning difficult?

Solutions to classical planning problems are paths from an initial state to a goal
state in the transition graph

Efficiently solvable by Dijkstra’s algorithm in O(|V | log |V |+ |E|) time
Why don’t we solve all planning problems this way?

State spaces may be huge: 10100 states is not uncommon

Constructing the transition graph is infeasible!
Planning algorithms try to avoid constructing whole graph, use concise
representation for many transitions as a single action
Complexity measured in terms of (concise) input size: simplest case is
PSPACE-complete

Planning algorithms often are more efficient than obvious solution methods
constructing the transition graph and using e.g. Dijkstra’s algorithm (mostly
infeasible in practice)

9 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Why is planning difficult?

Solutions to classical planning problems are paths from an initial state to a goal
state in the transition graph

Efficiently solvable by Dijkstra’s algorithm in O(|V | log |V |+ |E|) time
Why don’t we solve all planning problems this way?

State spaces may be huge: 10100 states is not uncommon

Constructing the transition graph is infeasible!
Planning algorithms try to avoid constructing whole graph, use concise
representation for many transitions as a single action
Complexity measured in terms of (concise) input size: simplest case is
PSPACE-complete

Planning algorithms often are more efficient than obvious solution methods
constructing the transition graph and using e.g. Dijkstra’s algorithm (mostly
infeasible in practice)

9 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Why is planning difficult?

Solutions to classical planning problems are paths from an initial state to a goal
state in the transition graph

Efficiently solvable by Dijkstra’s algorithm in O(|V | log |V |+ |E|) time
Why don’t we solve all planning problems this way?

State spaces may be huge: 10100 states is not uncommon

Constructing the transition graph is infeasible!
Planning algorithms try to avoid constructing whole graph, use concise
representation for many transitions as a single action
Complexity measured in terms of (concise) input size: simplest case is
PSPACE-complete

Planning algorithms often are more efficient than obvious solution methods
constructing the transition graph and using e.g. Dijkstra’s algorithm (mostly
infeasible in practice)

9 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Why is planning difficult?

Solutions to classical planning problems are paths from an initial state to a goal
state in the transition graph

Efficiently solvable by Dijkstra’s algorithm in O(|V | log |V |+ |E|) time
Why don’t we solve all planning problems this way?

State spaces may be huge: 10100 states is not uncommon

Constructing the transition graph is infeasible!
Planning algorithms try to avoid constructing whole graph, use concise
representation for many transitions as a single action
Complexity measured in terms of (concise) input size: simplest case is
PSPACE-complete

Planning algorithms often are more efficient than obvious solution methods
constructing the transition graph and using e.g. Dijkstra’s algorithm (mostly
infeasible in practice)

9 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Computational Approaches to Classical Planning

STRIPS algorithm (70’s): Total ordering planning backward from G; work always
on top subgoal in stack, delay rest

10 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Computational Approaches to Classical Planning

STRIPS algorithm (70’s): Total ordering planning backward from G; work always
on top subgoal in stack, delay rest

Partial Order (POCL) Planning (80’s): work on any subgoal, resolve threats;
UCPOP 1992

10 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Computational Approaches to Classical Planning

STRIPS algorithm (70’s): Total ordering planning backward from G; work always
on top subgoal in stack, delay rest

Partial Order (POCL) Planning (80’s): work on any subgoal, resolve threats;
UCPOP 1992

Graphplan (1995 - . . .): build graph containing all possible parallel plans up to
certain length; then extract plan by searching the graph backward from G

10 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Computational Approaches to Classical Planning

STRIPS algorithm (70’s): Total ordering planning backward from G; work always
on top subgoal in stack, delay rest

Partial Order (POCL) Planning (80’s): work on any subgoal, resolve threats;
UCPOP 1992

Graphplan (1995 - . . .): build graph containing all possible parallel plans up to
certain length; then extract plan by searching the graph backward from G

SatPlan (1996 - . . .): map planning problem given horizon into SAT problem; use
state-of-the-art SAT solver

10 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Computational Approaches to Classical Planning

STRIPS algorithm (70’s): Total ordering planning backward from G; work always
on top subgoal in stack, delay rest

Partial Order (POCL) Planning (80’s): work on any subgoal, resolve threats;
UCPOP 1992

Graphplan (1995 - . . .): build graph containing all possible parallel plans up to
certain length; then extract plan by searching the graph backward from G

SatPlan (1996 - . . .): map planning problem given horizon into SAT problem; use
state-of-the-art SAT solver

Heuristic Search Planning (1996 - . . .): search state space S(P) with heuristic
function h extracted from problem P

10 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Computational Approaches to Classical Planning

STRIPS algorithm (70’s): Total ordering planning backward from G; work always
on top subgoal in stack, delay rest

Partial Order (POCL) Planning (80’s): work on any subgoal, resolve threats;
UCPOP 1992

Graphplan (1995 - . . .): build graph containing all possible parallel plans up to
certain length; then extract plan by searching the graph backward from G

SatPlan (1996 - . . .): map planning problem given horizon into SAT problem; use
state-of-the-art SAT solver

Heuristic Search Planning (1996 - . . .): search state space S(P) with heuristic
function h extracted from problem P

Model Checking Planning (1998 - . . .): search state space S(P) with ’symbolic’
BrFS where sets of states represented by formulas implemented by BDDs

10 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Heuristic Search Planning

Key development in planning in the 90’s, is automatic extraction of heuristic
functions to guide search for plans

11 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Heuristic Search Planning

Key development in planning in the 90’s, is automatic extraction of heuristic
functions to guide search for plans

General idea: heuristics often explained as optimal cost functions of relaxed
(simplified) problems (Pearl 83), approximating c∗ the optimal cost function in Π

11 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Heuristic Search Planning

Key development in planning in the 90’s, is automatic extraction of heuristic
functions to guide search for plans

General idea: heuristics often explained as optimal cost functions of relaxed
(simplified) problems (Pearl 83), approximating c∗ the optimal cost function in Π

Most common relaxation in planning, Π+, obtained by dropping delete-lists from
ops in Π. If c∗(Π) is optimal cost of Π, then

h+(Π)
def
= c∗(Π+)

11 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Heuristic Search Planning

Key development in planning in the 90’s, is automatic extraction of heuristic
functions to guide search for plans

General idea: heuristics often explained as optimal cost functions of relaxed
(simplified) problems (Pearl 83), approximating c∗ the optimal cost function in Π

Most common relaxation in planning, Π+, obtained by dropping delete-lists from
ops in Π. If c∗(Π) is optimal cost of Π, then

h+(Π)
def
= c∗(Π+)

Heuristic h+ intractable but easy to approximate; i.e.

computing optimal plan for Π+ is intractable, but
computing a non-optimal plan for Π+ (relaxed plan) easy

11 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Heuristic Search Planning

Key development in planning in the 90’s, is automatic extraction of heuristic
functions to guide search for plans

General idea: heuristics often explained as optimal cost functions of relaxed
(simplified) problems (Pearl 83), approximating c∗ the optimal cost function in Π

Most common relaxation in planning, Π+, obtained by dropping delete-lists from
ops in Π. If c∗(Π) is optimal cost of Π, then

h+(Π)
def
= c∗(Π+)

Heuristic h+ intractable but easy to approximate; i.e.

computing optimal plan for Π+ is intractable, but
computing a non-optimal plan for Π+ (relaxed plan) easy

Some state-of-the-art planners still rely on Π+ . . .

11 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Heuristics for Classical Planning – Overview

Delete-relaxation

h+ (Hoffmann & Nebel, ’01)

hmax and hadd (Bonet & Geffner, ’01)

hFF (Hoffmann & Nebel, ’01)

hpmax (Mirkis & Domshlak, ’07)

hsa (Keyder & Geffner, ’08)

Semi-Relaxed Plan Heuristics (Keyder et al., ’12,’14; Haslum ’13; Hoffman et al., ’14)

Red-black Planning Heuristics (Katz et al., ’13a,b; Katz & Hoffman ’14; Domshlak et

al., ’15; Gnad & Hoffman, ’15; Speicher et al., ’17; Katz ’19; Fiser et al, ’21)

12 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Heuristics for Classical Planning – Overview

Delete-relaxation

h+ (Hoffmann & Nebel, ’01)

hmax and hadd (Bonet & Geffner, ’01)

hFF (Hoffmann & Nebel, ’01)

hpmax (Mirkis & Domshlak, ’07)

hsa (Keyder & Geffner, ’08)

Semi-Relaxed Plan Heuristics (Keyder et al., ’12,’14; Haslum ’13; Hoffman et al., ’14)

Red-black Planning Heuristics (Katz et al., ’13a,b; Katz & Hoffman ’14; Domshlak et

al., ’15; Gnad & Hoffman, ’15; Speicher et al., ’17; Katz ’19; Fiser et al, ’21)

Critical path

hm (Haslum & Geffner, ’00) with h1 ≡ hmax

12 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Heuristics for Classical Planning – Overview

Abstractions

PDBs (Edelkamp, ’01; Haslum et al., ’05, ’07)

Merge & Shrink (Helmert et al., ’07,’14; Katz et al, ’12; Sievers et al., ’14)

Implicit Abstractions (Katz & Domshlak, ’08, ’10)

Counterexample-guided Abstraction Refinement (CEGAR) (Seipp & Helmert, ’13,

’14, ’18)

12 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Heuristics for Classical Planning – Overview

Abstractions

PDBs (Edelkamp, ’01; Haslum et al., ’05, ’07)

Merge & Shrink (Helmert et al., ’07,’14; Katz et al, ’12; Sievers et al., ’14)

Implicit Abstractions (Katz & Domshlak, ’08, ’10)

Counterexample-guided Abstraction Refinement (CEGAR) (Seipp & Helmert, ’13,

’14, ’18)

Landmarks

Landmark count (Hoffmann et al., ’04)

hL and hLA (Karpas & Domshlak, ’09)

LM -cut (Helmert & Domshlak, ’10)

12 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Heuristics for Classical Planning – Overview

Abstractions

PDBs (Edelkamp, ’01; Haslum et al., ’05, ’07)

Merge & Shrink (Helmert et al., ’07,’14; Katz et al, ’12; Sievers et al., ’14)

Implicit Abstractions (Katz & Domshlak, ’08, ’10)

Counterexample-guided Abstraction Refinement (CEGAR) (Seipp & Helmert, ’13,

’14, ’18)

Landmarks

Landmark count (Hoffmann et al., ’04)

hL and hLA (Karpas & Domshlak, ’09)

LM -cut (Helmert & Domshlak, ’10)

Potential Heuristics

hpot (Pommerening et al., ’15; Seipp et al., ’15) 12 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Search Pruning Techniques

Partial Order Reduction (Alkhazraji et al., ’12; Wehrle et al., ’13; Wehrle & Helmert, ’14;

Roeger et al., ’20)

Exploit independence of operators

Preserve at least one permutation of every plan

13 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Search Pruning Techniques

Partial Order Reduction (Alkhazraji et al., ’12; Wehrle et al., ’13; Wehrle & Helmert, ’14;

Roeger et al., ’20)

Exploit independence of operators

Preserve at least one permutation of every plan

Structural Symmetries (Pochter et al., ’11; Domshlak et al., ’12; Sievers et al., ’19)

Exploit search space automorphisms

Find path in quotient system, translate to plan

13 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Search Pruning Techniques

Partial Order Reduction (Alkhazraji et al., ’12; Wehrle et al., ’13; Wehrle & Helmert, ’14;

Roeger et al., ’20)

Exploit independence of operators

Preserve at least one permutation of every plan

Structural Symmetries (Pochter et al., ’11; Domshlak et al., ’12; Sievers et al., ’19)

Exploit search space automorphisms

Find path in quotient system, translate to plan

Novelty Pruning (Lipovetzky & Geffner, ’12, ’14, ’17; Katz et al., ’17; Tuisov & Katz, ’21)

Define a series of increasing size search spaces

Search for plan in each, until one found

13 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Search Pruning Techniques

Partial Order Reduction (Alkhazraji et al., ’12; Wehrle et al., ’13; Wehrle & Helmert, ’14;

Roeger et al., ’20)

Exploit independence of operators

Preserve at least one permutation of every plan

Structural Symmetries (Pochter et al., ’11; Domshlak et al., ’12; Sievers et al., ’19)

Exploit search space automorphisms

Find path in quotient system, translate to plan

Novelty Pruning (Lipovetzky & Geffner, ’12, ’14, ’17; Katz et al., ’17; Tuisov & Katz, ’21)

Define a series of increasing size search spaces

Search for plan in each, until one found

Each of these techniques can lead to exponential reduction of the search space
13 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

International Planning Competition (IPC)

How do you compare so many planners?

14 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

International Planning Competition (IPC)

How do you compare so many planners? Competitions!

14 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

International Planning Competition (IPC)

How do you compare so many planners? Competitions!

Run every ≈2 years: 1998, 2000, 2002, 2004, 2006, 2008,

14 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

International Planning Competition (IPC)

How do you compare so many planners? Competitions!

Run every ≈2 years: 1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, 2018,
(possibly 2022)

14 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

International Planning Competition (IPC)

How do you compare so many planners? Competitions!

Run every ≈2 years: 1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, 2018,
(possibly 2022)

Unified language: PDDL

14 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

International Planning Competition (IPC)

How do you compare so many planners? Competitions!

Run every ≈2 years: 1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, 2018,
(possibly 2022)

Unified language: PDDL

Multiple tracks: Deterministic, Uncertainty/Probabilistic, Temporal, Learning,
Unsolvability, Hierarchical, . . .

14 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

International Planning Competition (IPC)

How do you compare so many planners? Competitions!

Run every ≈2 years: 1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, 2018,
(possibly 2022)

Unified language: PDDL

Multiple tracks: Deterministic, Uncertainty/Probabilistic, Temporal, Learning,
Unsolvability, Hierarchical, . . .

Multiple sub-tracks: cost-optimal, cost-bounded, satisficing, agile, . . .

14 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

International Planning Competition (IPC)

How do you compare so many planners? Competitions!

Run every ≈2 years: 1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, 2018,
(possibly 2022)

Unified language: PDDL

Multiple tracks: Deterministic, Uncertainty/Probabilistic, Temporal, Learning,
Unsolvability, Hierarchical, . . .

Multiple sub-tracks: cost-optimal, cost-bounded, satisficing, agile, . . .

Rules: (most tracks) participants submit their planners, then organizers choose
the domains/instances and run all the submitted planners.

14 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

International Planning Competition (IPC)

How do you compare so many planners? Competitions!

Run every ≈2 years: 1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, 2018,
(possibly 2022)

Unified language: PDDL

Multiple tracks: Deterministic, Uncertainty/Probabilistic, Temporal, Learning,
Unsolvability, Hierarchical, . . .

Multiple sub-tracks: cost-optimal, cost-bounded, satisficing, agile, . . .

Rules: (most tracks) participants submit their planners, then organizers choose
the domains/instances and run all the submitted planners.

Winners get all the glory! (and some cash prizes)

14 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

International Planning Competition (IPC)

How do you compare so many planners? Competitions!

Run every ≈2 years: 1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, 2018,
(possibly 2022)

Unified language: PDDL

Multiple tracks: Deterministic, Uncertainty/Probabilistic, Temporal, Learning,
Unsolvability, Hierarchical, . . .

Multiple sub-tracks: cost-optimal, cost-bounded, satisficing, agile, . . .

Rules: (most tracks) participants submit their planners, then organizers choose
the domains/instances and run all the submitted planners.

Winners get all the glory! (and some cash prizes)

Huge driver for research in planning for the last 20+ years.

14 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Famous Planners: IPC Top Performers

Cost-optimal:
FDSS (IPC’11)
SymBA∗ (IPC’14)
Delfi (IPC’18)

Satisficing:
LAMA (IPC’08,11)
IBaCoP (IPC’14)
Mercury (IPC’14)
FDSS (IPC’18)
LAPKT-DUAL-BFWS (IPC’18)

Probabilistic:
Prost (Since 2014)
Prost-DD (IPC’18)
Random-Bandit (IPC’18)

Temporal:
YAHSP3-MT (IPC’14)
Temporal-FD (IPC’14) 15 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Major Planning Toolkits/Systems/Families

Fast-Forward (better known as FF): Classical satisficing, numeric, conformant,
contingent planners (Hoffmann & Nebel, ’01)

Fast Downward: Classical cost-optimal, satisficing, agile, cost-bounded. Variants
built on top of Fast Downward include: OSP, FOND, probabilistic, temporal,
. . . (Helmert, ’06)

Lightweight Automated Planning ToolKiT (LAPKT): Classical cost-optimal,
satisficing, agile (Ramirez, Lipovetzky, and Muise, ’15)

LPG: Classical satisficing, numeric, temporal, diverse, . . . (Gerevini & Serina, ’02)

SHOP2: HTN planning (Nau et al., ’03)

OPTIC: Temporal planning (Benton et al., ’12)

Many many more . . .

16 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Non-IPC Planners and Tools

Planning service (and docker) for cost-optimal, agile, satisficing, top-k,
top-quality, diverse planning (by Katz et al.)

Planner in the cloud, collection of tools and APIs (by Muise et al.)

Forbid-Iterative Collection of planners for top-k, top-quality, diverse planning (Katz

& Sohrabi, ’20; Katz et al., ’20a,’20b,’22)

Top-k planners: K∗ (Katz et al., ’18) and SymK (Speck et al., ’20)

OSP planners (Katz et al., ’19; Katz & Keyder, ’19; Speck & Katz, ’21)

FOND planner PRP (Muise et al., ’12,’14a,b)

Pyperplan: Lightweight python-based planner developed for educational purposes
(Alkhazraji et al., ’20)

17 / 18

What is AI Planning Solving Classical Planning Planners & Planning Competitions Non-IPC Planners

Other Major Community Efforts

Slack workspace

ICAPS web site

Community GitHub

PlanUtils: General library for setting up linux-based environments for developing,
running, and evaluating planners

Planning Wiki (initial effort), including a list of planners

All links

18 / 18

	What is AI Planning
	Solving Classical Planning
	Planners & Planning Competitions
	Non-IPC Planners

